Continuidad
 | f(x)=x2 |
Intuitivamente, la continuidad significa que un pequeño cambio en la variable x implica sólo un pequeño cambio en el valor de f(x), es decir, la gráfica consiste de un sólo trozo de curva.
 | | f(x)=sgn x |
En contraste, una gráfica como la de la función f(x) = sgn x (signo de x) que consiste de pedazos de curva separados por un vacío en una abcisa exhibe allí una discontinuidad.
La continuidad de la función f(x) para un valor a significa que f(x) difiere arbitrariamente poco del valor f(a) cuando x está suficientemente cerca de a.
Expresemos esto en términos del concepto de límite...
Continuidad
Una función f(x) es continua en un punto a si limx->af(x) = f(a).
Nota: observar que debe existir f(a) y debe existir el limx->a f(x) y debe ser igual a f(a).
Ejemplos de discontinuidad
 | f(x)= 1/x2
Discontinua en x=0 (No existe f(0)) |
 | | f(x) = x2 si x <= 2 2x - 4 si x > 2
Discontinua en x=2.
Si bien existe f(2), no existe limx->2f(x), pues limx->2-f(x)=4 y limx->2+f(x)=0 |
Sin embargo, si miramos la función para x próximos a 2 pero menores, e ignoramos los x mayores que 2, la función es continua en 2 "por la izquierda".
Definición
Continuidad por la izquierda
Una función f(x) es continua por la izquierda en el punto a si existe f(a) y limx->a-f(x) = f(a).
Definición
Continuidad por la derecha
Una función f(x) es continua por la derecha en el punto a si existe f(a) y limx->a+f(x) = f(a).
La función anterior es continua por la izquierda en x=2, pero no por la derecha.
Definición
Continuidad en un intervalo cerrado [a,b]
Una función f(x) es continua en un intervalo cerrado [a,b] si:
f es continua en a por la derecha
f es continua en b por la izquierda
f es continua en x, para todo x perteneciente al intervalo abierto (a,b)
Evitable
Caso A:
No existe f(a) pero existe limx->af(x).
Ejemplo:
 | | f(x)= e-1/x2 + 2 |
No existe f(0) pues anula un denominador.
limx->0-f(x) = limx->0+f(x) = 2 o sea limx->0f(x)=2
Podemos extender la definición de la función, asignándole en el punto a el valor del límite, con lo cual la función se torna continua. Por ello este tipo de discontinuidad se denomina evitable.
Caso B:
Existe f(a) y existe limx->af(x)=b pero b≠f(a).
(Existe f(a) pero es distinto al valor del límite).
Ejemplo:
 | | f(x) = x2 si x≠2 8 si x=2 |
f(2) = 8
limx->2 f(x) = 4
Asignándole a la función el valor 4 en x=2, se elimina la discontinuidad.
No evitable
1ª especie:
limx->a-f(x) ≠ limx->a+f(x).
(Los límites laterales son distintos).
Ejemplo:
 | | f(x) = x/(x - 2) |
limx->2-f(x) = -inf
limx->2+f(x) = +inf
2ª especie:
No existe limx->a-f(x) o no existe limx->a+f(x).
(No existe por lo menos uno de los límites laterales).
Ejemplo:
 | | ______
f(x) = \|x2 - 4
|
En x=-2 y x=2 la función presenta discontinuidades no evitables de 2ª especie. No existe limx->-2+f(x) y no existe limx->2-f(x).
Operaciones con funciones continuas
Si f y g son funciones continuas en x=a, la suma, multiplicación y cociente de f y g (con g(a) ≠ 0) son funciones continuas en x=a.
H) f(x) es continua en x=a.
g(x) es continua en x=a.
T) f(x) + g(x) es continua en x=a.
Demostración
existe f(a) y existe limx->af(x) = f(a)
existe g(a) y existe limx->ag(x) = g(a)
limx->a f(x) + g(x) = f(a) + g(a)
Análogamente se prueba la continuidad del producto y el cociente.
Teorema
Continuidad de la función compuesta
H) f es continua en x=a.
g es continua en x=f(a).
T) g o f es continua en x=a.
Demostración:
Queremos demostrar que lim
x->a g[f(x)]=g[f(a)], o sea, por
definición de límite, queremos probar que, dado ε>0 existe δ>0 tal que para todo x perteneciente al E
*a,δ g[f(x)] perteneciente al E
g[f(a)],ε.
para todo x perteneciente al E*f(a),δ g(x) pertenece al Eg[f(a)],ε (1)
Por hipótesis f es continua en a => por
def. de continuidad lim
x->af(x) = f(a), es decir que (por
def. de límite) si tomamos el número δ de (1), existe α>0 tal que...
para todo x perteneciente al E*a,α f(x) pertenece al Ef(a),δ (2)
De (1) y (2) se deduce que:
Dado ε>0 existe α>0 / para todo x perteneciente al E*a,α g[f(x)] pertenece al Eg[f(a)],ε.